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Selection can facilitate diversification by inducing character displacement in

mate choice traits that reduce the probability of maladaptive mating between

lineages. Although reproductive character displacement (RCD) has been

demonstrated in two-taxa case studies, the frequency of this process in

nature is still debated. Moreover, studies have focused primarily on visual

and acoustic traits, despite the fact that chemical communication is probably

the most common means of species recognition. Here, we showed in a large,

mostly sympatric, butterfly genus, a strong pattern of recurrent RCD for pre-

dicted male sex pheromone composition, but not for visual mate choice

traits. Our results suggest that RCD is not anecdotal, and that selection for

divergence in male sex pheromone composition contributed to reproductive

isolation within the Bicyclus genus. We propose that selection may target

olfactory mate choice traits as a more common sensory modality to ensure

reproductive isolation among diverging lineages than previously envisaged.
1. Introduction
Species diversification is typically a by-product of drift or ecological adaptation of

populations evolving in allopatry. Sometimes, when formerly separated lineages

come into secondary contact, selection can increase divergence in their mate

choice traits to reduce the risk of maladaptive mating. This process is termed repro-

ductive character displacement (RCD) and includes reinforcement, a special case

where gene flow is ongoing between lineages [1,2]. Once controversial, RCD has

received theoretical support [3]. Empirical evidence for RCD has also accumulated

mostly from studies comparing a pair of species [4–10], whereas the frequency of

RCD in nature is best addressed using large assemblages of recently diverged

species [11–16]. Moreover, these studies have focused primarily on visual and

acoustic mate choice traits, despite the fact that chemical communication is ubiqui-

tous and probably the most common means of species recognition across living taxa

worldwide [17,18]. Compared with visual, acoustic or electric signals, chemical sig-

nals such as sex pheromones are unique in that their perception requires specific

combinations of chemical receptors [19–21]. Therefore, chemical signals may

ensure a high level of privacy in communication between interacting organisms,

and their evolution may be less dependent on selective forces other than mate

choice. Thus, while these studies demonstrate that RCD has occurred, the assess-

ment of how frequently RCD occurs in nature [22] should thus focus on large

assemblages of closely related species and on mate choice traits most commonly

used in species recognition—i.e. chemical mate choice traits [17,18]. In this study,

we tested for the presence of RCD in a chemical mate choice trait in contributing

to the evolution of recurrent reproductive isolation under natural selection.
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Figure 1. Morphological (left) and chemical (right) diversity of males of an allopatric (upper panels) and a sympatric (lower panels) pair of sister species. Scale bar, 1 cm.
Names of shared pMSP compounds are in bold.
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The more than 80 species of the sub-Saharan butterfly genus

Bicyclus (Lepidoptera, Nymphalidae) are strikingly similar mor-

phologically. This speciose group diversified during the

Miocene, and pairs of sister species differentiated between 0.5

and 5 million years ago [23]. Up to 20 species can be captured

in a day in a single forest patch, where males pursue, and court

females from various Bicyclus species and rare heterospecific

matings have been observed in captivity and in nature. This

suggests that interspecific interactions are frequent and it raises

the question of how reproductive isolation occurs between

these sympatric and morphologically similar species (figure 1).

Interestingly, the key taxonomic trait used to distinguish Bicyclus
species is the number and position of androconia [24], the wing

structures thought to be involved in the production and emission

of male sex pheromone. Furthermore, it has been demonstrated

that male sex pheromone (MSP) plays a key role in mate choice

in the model species Bicyclus anynana [25–27]. After landing

behind a female, B. anynana males flicker their wings and erect

their androconial hair, probably favouring the dissemination of

MSP at short range [25]. Therefore, we postulated that selection

on differentiation in the sex pheromone composition has pro-

duced recurrent RCD in this butterfly genus. Building on

knowledge from the model species B. anynana [25–27], we first

developed a methodology to select from complex chemical pro-

files the components most likely to form the male sex pheromone

for over 30 Bicyclus species. Accounting for the potential effect of

the environment, we then assessed the presence of a recurrent

pattern of character displacement in the predicted sex phero-

mone composition across the genus. We next compared the

rate of evolution of the predicted sex pheromones with that of

other, morphological, Bicyclus mate choice traits (the wing eye-

spots [28,29]). Finally, we examined the extent to which the

evolution of composition of the predicted sex pheromone and

of androconia are coupled.

2. Material and methods
(a) Sampling
We sampled three males and two females of 32 Bicyclus species

in four African countries (electronic supplementary material,
figure S1) using fruit-baited traps. The different androconia

and the remaining part of the wings of freshly killed indivi-

duals were stored in separate glass vials filled with n-heptane

as a solvent for chemical compounds extraction and further gas-

chromatography and mass–spectrometry analyses (GC–MS;

electronic supplementary material, note S1).

(b) Selection of the predicted male sex pheromone
dataset

We developed a standardized routine to select the compounds

most likely composing the MSP among the more than 40

compounds identified per species. We based this method on

data collected for B. anynana, for which the behaviourally

active chemicals forming the MSP have been identified

using gas chromatography-electroantennographic detection

(GC-EAD) and behavioural assays [25–27]. We called the

selected compounds the ‘predicted male sex pheromone’

(pMSP) components. We first removed any peak smaller than

10 ng, to homogenize the detectability of compounds between

samples and to permit the identification of all selected peaks.

Despite the ability of GC-EAD to detect the presence of olfac-

tory receptors for chemicals present in minute amounts, the

B. anynana MSP was shown to be formed by the most abun-

dant, male-specific and repeatable compounds [25]. We thus

selected the compounds on average more than five times

more abundant in males than in females and present in at

least two out of three sampled males. This first selection still

resulted in more compounds than known from data obtained

using GC-EAD and behavioural assays in B. anynana, in

which the MSP components are the top third of the most abun-

dant compounds [25–27]. Moreover, MSP components that

experience directional sexual selection are usually more abun-

dant than other compounds (see [30] and examples in

Lepidoptera [31,32], Hymenoptera [33], lizards [34] or elephants

[35]). Thus, from the first selection, we kept the top third most

abundant compounds for each Bicyclus species, forming the

dataset of pMSP components used in all subsequent analyses

(electronic supplementary material, table S1). Of note, we did

not include the Malawian laboratory stock of B. anynana from

which the selection procedure was designed but rather a

field-caught Ugandan B. anynana population (electronic sup-

plementary material, note S1).
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(c) Scoring of morphological traits
We coded the presence and absence of 20 androconial structures

grouped according to their position in relation to the wing veins

and dorsal or ventral wing surface (electronic supplementary

material, note S1). We coded presence or absence of the 17 eye-

spots and two wing bands (electronic supplementary material,

note S1) separated in two groups according to their presence

on the ventral or dorsal wing surfaces because they evolve

under different selection pressures: the ventral eyespots probably

evolve under natural selection, whereas the dorsal characters

evolve under sexual selection [28,29].
Proc.R.Soc.B
282:20142734
(d) Test of reproductive character displacement
First, we coded each trait (pMSP, androconia, dorsal forewing

eyespots as well as ventral fore- and hindwing eyespots) as a

series of binary characters (present or absent). We compared

the pMSP composition between species taken pair by pair.

Because most Bicyclus species do not share any pMSP component

(see Results), in 85% of the species pairs, the commonly used Jac-

card distance (proportion of pMSP differences) has a value of 1.

Yet, pairs of Bicyclus species differ widely in their number of

pMSP differences. Therefore, we partitioned the pMSP compo-

sition into two complementary variables: the number of pMSP

differences and the number of shared pMSP components, per

pair of species. There was no correlation between the numbers

of pMSP components shared and different between species, sup-

porting our partitioning approach (Mantel test with 9999

permutations, n ¼ 496 pairs of species, r ¼ 20.11, p ¼ 0.15). To

allow meaningful comparison across traits, we also scored the

other, morphological, traits similarly (shared versus different)

although these matrices showed significant correlations for

these morphological traits (androconia r ¼ 20.52, p , 0.01, ven-

tral eyespots r ¼ 20.35, p , 0.01 and dorsal eyespots r ¼ 20.64,

p , 0.01). Yet, using the Jaccard distance for these morphological

traits did not change our results (not shown). Second, pMSPs

were also compared between species based on their amounts,

and using the Euclidian distance on log-transformed amounts

of pMSP components.

We tested whether the variability of pMSP composition

between pairs of species could be explained by the role of

this trait in reproductive isolation. We expected larger differ-

ences in pMSP composition or amounts between sympatric

than between allopatric pairs of species [12]. Because androco-

nia (via pMSP) and dorsal eyespots are also linked to mate

choice, we also expected a RCD pattern for these traits. We

defined sympatry and allopatry solely based on our field data

such that sympatric pairs of species had been caught simul-

taneously in the same fruit-baited trap. Extensive work in

museums has, however, confirmed that our assignation of sym-

patry and allopatry was relevant (O. Brattström 2014, personal

observation). We performed multiple regressions on the pMSP

matrices using linear models in the ecodist R package [36–38]

to test whether sympatry or allopatry explained the variation

in pMSP composition between pairs of species. This is a non-

parametric method that creates a null distribution of the

estimated parameters by permuting the data and does not

rely on the assumption of independence of each observation

(each pair of species). We included the following control factors

in the model: phylogenetic distance between species within the

pairs (phylogenetic tree based on COI, COII and EF1a genes;

electronic supplementary material, note S2); and forest versus

savannah habitats, as humid environments such as rainforests

may affect olfactory communication [39]. We did not include

an interaction term between the phylogenetic distance and

sympatry, because this statistical method has not been validated

for models with an interaction term between variables

(P. Legendre 2012, personal communication).
(e) Estimation of the rates of evolution of the chemical
and morphological traits

We mapped each series of binary characters (pMSP components,

androconia, dorsal forewing eyespots and ventral fore- and

hindwing eyespots) on the phylogenetic tree (electronic sup-

plementary material, note S2). We measured the rate of

evolution as a turnover of character presence and absence

across the Bicyclus phylogeny. For this, we fitted a symmetrical

(equal rates of gain and loss) continuous time Markov model

to each trait using a Bayesian framework in the program

BAYESTRAITS multistate [40]. Although an asymmetrical model

better fitted the androconia and ventral eyespot traits than a sym-

metrical model, both yielded similar results for comparing the

rate of evolution between all traits (electronic supplementary

material, figure S5).
3. Results
(a) High specificity of predicted sex pheromone

composition
The 32 sampled Bicyclus species displayed on average 42+17

chemical volatile compounds (mean+ s.d.). Chemical pro-

files were found to be repeatable between conspecifics

when three males and two females were analysed using gas

chromatography-mass spectrometry (GC–MS) analyses (elec-

tronic supplementary material, notes S1 and S4). For the 32

Bicyclus species, we selected a total of 75 compounds that

probably formed the composition of their respective MSP

(3.7+ 2.1 pMSP components per species, mean+ s.d.;

figure 2 and electronic supplementary material, table S1

and figure S2a). These pMSP components showed a wide

diversity of chemical structures, and for some of them have

been previously identified as sex pheromone components in

moths [41]. Of the Bicyclus pMSP components, 51% were

fatty acid derivatives, 20% terpenes and terpenoids, 2% aro-

matics, 6% carotene derivatives and the remaining 21%

miscellaneous or of unknown origin (figure 2 and electronic

supplementary material, table S1). Although the behavioural

activity of the male odours has yet to be demonstrated in

bioassays, the low within-species variability of chemical pro-

files (Spearman rank correlation R (mean+ s.d.) ¼ 0.81+
0.15 and 0.74+ 0.18 in males and females, respectively; elec-

tronic supplementary material, figure S7) contrasted with the

high between-species variability of male chemical profiles

(R ¼ 0.18+0.16; Wilcoxon rank test p , 2.2 � 10216, elec-

tronic supplementary material, figure S7; 71% of pMSP

components were species-specific, and each pMSP com-

ponent was shared by 1.6 species on average of 32; figure 2

and electronic supplementary material, table S1 and figure

S2b) and is consistent with a role of the pMSP in species rec-

ognition. This pattern of high species-specificity remained

true when we considered the additional Bicyclus lineages in

which the 75 pMSP components were found as trace com-

pounds, but had not been selected as pMSP components in

these latter species (grey cells in figure 2b); each pMSP com-

ponent or its trace was shared by 4.5 species on average of 32.

Moreover, we observed that most observed changes in pMSP

composition arose recently in the evolution of the Bicyclus
genus (figure 2 and electronic supplementary material,

note S2) and some pairs of sympatric species can display a

remarkably large number of pMSP differences (figure 1).
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(b) Reproductive isolation by olfactory communication
These results suggest that pMSP composition could be

involved in premating reproductive isolation between Bicyclus
species. To test this hypothesis, we next compared pMSP

composition between sympatric and allopatric pairs of

species while controlling for phylogenetic distance within

pairs. The number of pMSP differences was greater between

species in sympatric pairs, compared with allopatric pairs

(permutation test; 9999 permutations; n ¼ 496 pairs of

species; effect size ¼ 0.66; p ¼ 0.009; figure 3a). By contrast,

the number of shared pMSP components was solely deter-

mined by phylogenetic distance (permutation test; 9999

permutations; n ¼ 496 pairs of species; effect size ¼ 22.49;

p , 0.001; electronic supplementary material, figure S8a and

note S6). Therefore, RCD appears to develop by the recurrent

accumulation of new, distinct, chemical components and not

by a reduction in the number of shared pMSP components.

Several factors contribute to the robustness of this result.

First, we used a conservative test, defining as sympatric

only those pairs of species caught simultaneously in the

same fruit-baited trap. Because we expected sympatric pairs

to be chemically more different than allopatric pairs, mistakes
in the assignation of sympatry or allopatry would homogen-

ize the differences in pMSP composition expected between

the sympatric and the allopatric groups of species and as

such decrease the observed RCD pattern. Second, the

number of pMSP differences tended to decrease with phylo-

genetic distance within pairs of sympatric species (figure 3a).

Although we could not test the significance of this effect

(P. Legendre 2012, personal communication), it suggests

that the pMSP divergence is owing to interactions between

closely related species in sympatry, which is expected for

RCD, because less closely related species are less likely to

hybridize [42]. In this regard, considering only the most

recently diverged pairs of species tripled the effect size of

sympatry (model using only species pairs separated by less

than 0.15 of phylogenetic distance in figure 3a; n ¼ 38 pairs,

R2 ¼ 0.31; effect size ¼ 1.77 and p ¼ 0.02 for ‘sympatry’;

effect size ¼ 2.03 and p ¼ 0.07 for ‘habitat’; effect size ¼ 5.48

and p ¼ 0.59 for ‘phylogeny’, electronic supplementary

material, table S2). Third, the significantly higher number of

pMSP component differences between sympatric compared

with allopatric species pairs was robust to the deletion of

three pairs of allopatric species which could be considered

http://rspb.royalsocietypublishing.org/
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as outliers in our dataset (electronic supplementary material,

note S5 and figure S9). Fourth, the RCD pattern was also

found when we tested for the variation in amount, and not

simply in the presence or absence, of the pMSP components

across the Bicyclus phylogeny: sympatric pairs of species

displayed significantly higher differences in amount in pMSP

components than allopatric pairs of species (figure 3b; p¼
0.05). Fifth, the RCD pattern remained when we included the

pMSP components found as traces in the additional Bicyclus
lineages, either considering their presence or absence (figure

3c; p¼ 0.04) or as a trend when considering their variation in

amount (figure 3d; p¼ 0.08).

As controls, we tested for the presence of RCD in other

adaptive, morphological, traits: dorsal forewing eyespots
(important in mate choice [28]), ventral wing eyespots

(important in predator avoidance [28]) and androconia

(putatively important for pheromone production). For

these traits, the numbers of shared characters and of differ-

ences are comparable for sympatric and allopatric species

pairs, and both depend on phylogenetic distance (figure

3e–g and electronic supplementary material, figure S8 and

note S6). In contrast to the olfactory trait, neither of these

morphological traits evolved character displacement

between sympatric closely related lineages. The evolution

of androconia, in particular, seems not to be linked to the

signal they release, as specific structures are not associated

with specific pMSP components (electronic supplementary

material, note S7).
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(c) Limited habitat-driven evolution of predicted male
sex pheromone composition

In addition to RCD, ecological character displacement can

also drive divergence of mate choice traits when natural

selection occurs to reduce ecological niche competition

[42,43]. We considered two ecologically significant factors

that could affect pMSP evolution: habitat type (forest

versus savannah) and host plant specificity [44]. Habitat

type had, indeed, a marginally significant effect on pMSP

differentiation (effect size ¼ 1.58 and p ¼ 0.06; figure 3a and

electronic supplementary material, figures S9 and S10), but

was not responsible for the pattern of pMSP character displa-

cement observed between closely related sympatric species

pairs. The effect of habitat type was due to a higher

number of pMSP components in forest than in savannah

species (generalized estimated equation; n ¼ 32 species;

effect size ¼ 4.52; p , 0.01; electronic supplementary

material, note S8), which suggests that a higher diversity of

olfactory signals may compensate for the potential impair-

ment of olfactory communication in humid environments

like rainforests [39]. The number of species (higher in forests)

could not be separated from the effect of habitat owing to the

reduced number of sampled localities (n ¼ 6; electronic sup-

plementary material, note S8). Of note, forest species also

displayed a larger number of androconia, but not of eyespots,

compared with savannah species (as shown indirectly by the

electronic supplementary material, figure S10).

Ecological character displacement could also result from

adaptation to different host plants at the larval stage to

avoid competition, which could induce modification of MSP

composition and reproductive isolation at the adult stage

[45]. Although host plant specificity remains unknown for

most Bicyclus species, 56% of pMSP components are fatty

acid derivatives which can be produced de novo by insects

[46,47]. The remaining 44% of pMSP components may be,

but are not necessarily, derived from host plant use (e.g. [48]

and figure 2). Moreover, these potentially host-plant-derived

components did not show higher species specificity than

fatty-acid-derived pMSP components (shared respectively by

1.65+1.43 and 1.48+0.93 species; mean+ s.d.). In the

laboratory, rearing B. anynana larvae on grasses closely related

to its assumed natural host plant (Oplismenus sp.) or on maize

(Zea mays), the usual laboratory host plant for this butterfly,
did not affect the chemical profiles of adults [25]. These results

suggest that host plant adaptation may have only a limited

effect on pMSP composition or differentiation across the

Bicyclus genus.
(d) Differential fusion or species sorting do not explain
the pattern of predicted male sex pheromone
evolution

Two other alternative processes to RCD (species sorting and

differential fusion [12,49]) might explain the greater diver-

gence of pMSP composition in sympatric compared with

allopatric species pairs. These processes occur if, after the

differentiation of pMSP composition between species evolved

in allopatry, secondary contact results in the merging of

insufficiently differentiated lineages (differential fusion) or

the local extinction of one (species sorting), whereas those

lineages that have evolved sufficiently strong reproductive

isolation are able to coexist. We found, however, that allopa-

tric pairs of Bicyclus species were not younger than sympatric

ones (electronic supplementary material, note S9) which

would be expected if a subset of the sympatric species (the

youngest) had merged or went extinct in sympatry during

secondary contact owing to weak reproductive isolation

[42]. Thus, our data suggest that neither differential fusion

nor species sorting explain the recurrent pattern of pMSP

diversification across the genus.
(e) Rapid evolution of sex pheromone composition
In the few documented case studies, species interactions

caused the evolution of RCD over very short evolutionary

timescales in nature, i.e. in a small number of generations

[5] or a few thousand years [7]. Thus, we expect that any

mating traits which produce reproductive isolation by RCD

should evolve rapidly. Although the actual rates of change

must be treated with caution (electronic supplementary

material, note S3), the results of the comparison suggest

that pMSP have diverged over four times more rapidly

than dorsal eyespots, another mate choice trait in B. anynana
[29], which, in turn, have evolved more than twice as fast as

androconia (figure 4). This relatively high turnover of pMSP
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composition across species is in agreement with the involve-

ment of this trait in premating reproductive isolation [5,7,50].
spb.royalsocietypublishing.org
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4. Discussion
Our results correlate the local co-occurrence of closely related

Bicyclus species to the larger differences in composition, and

in amount, of their major male volatile compounds. This

suggests a link between the establishment, or increase, of repro-

ductive isolation between Bicyclus species and the recurrent

differentiation of their major male volatile compounds.

Our results are based on a selection method targeting the

volatile wing compounds most likely acting as male second-

ary sexual traits. We based our selection method on criteria

established in the field of sexual selection and widely sup-

ported across taxa and across phenotypic traits: we picked

male-specific, repeatable and most abundant compounds as

these are most likely under directional selection for largest

possible amounts by females. These characteristics are

indeed the ones of the male sex pheromone identified using

electrophysiological and behavioural experiments in the

model species B. anynana [25–27]. The use of a selection

method also has the advantage to avoid circular reasoning,

as we show that the compounds chosen on one basis (male

sex specificity, repeatability and amount in males) show a

biological pattern of species specificity and RCD. However,

our selection of pMSP components probably contains some

chemicals not playing the role of sex pheromone, and we

probably missed some sex pheromone components in our

pMSP selection. We may also have included as pMSP, com-

pounds that have other function in reproduction, such as

anti-aphrodisiacs. Yet, the behaviour of B. anynana does not

suggest the existence of anti-aphrodisiacs (e.g. no pupal

mating like in Heliconius [51]). Anti-aphrodisiacs are trans-

ferred between male and female abdomens, which were not

analysed here. Moreover, traits involved in male–male com-

petition for accessing females, such as anti-aphrodisiacs, are

unlikely to be under selection for increased differentiation

in sympatry compared with allopatry. Altogether, our criteria

maximized the probability of selecting compounds acting as

male secondary sexual traits under sexual selection by

females, and the inclusion of compounds with other func-

tions in our pMSP selection, such as anti-aphrodisiacs,

would have blurred the RCD pattern. Future behavioural

studies using synthetic sex pheromone perfumes as in

Nieberding et al. [26] are needed to confirm the role of the

selected compounds in sexual communication and reproduc-

tive isolation in field-caught populations of Bicyclus sharing

some pMSP components.

Importantly, the presence of a recurrent RCD pattern is

stronger for the chemical trait when we use their pattern of

presence and absence (figure 3a), rather than their variation

in amount across species (figure 3b). In addition, the RCD

pattern held true for the chemical trait when we included

the pMSP components found scattered as trace compounds

in other Bicyclus lineages (‘grey cells’ in figure 2b). This was

expected as, notwithstanding our selection method, the

majority of male major compounds are simply absent in

related species. The traces of pMSP components found in

other Bicyclus species are either present: (i) at low amount,

in that case we expect the female to reject the male, as

shown in B. anynana in which mate choice is based on
maximal amounts of MSP [26,27]; or (ii) in a female, in that

case, the chemical cue is not going to be a problem as females

rarely court other females in B. anynana. Thus, in Bicyclus but-

terflies, the presence or absence of pMSP components probably

allows species recognition. Our results do not exclude that, as

is found in moths [17,18], variations in ratios between com-

pounds or the presence of minor chemical compounds may

participate to reproductive isolation in this genus, together

with the presence of abundant pMSP components.

Our results show that incipient Bicyclus species initially

share some compounds (electronic supplementary material,

figure S4a) and achieve reproductive isolation by accumulat-

ing more rapidly pMSP differences in sympatry than in

allopatry (figure 3a). With time, differences in pMSP com-

ponents continue to accumulate between species and

shared pMSP components are lost, because pMSP turnover

is high (figure 4), which is why most Bicyclus species cur-

rently do not share any pMSP component anymore.

Importantly, it does not imply that all pMSP differences

appeared to achieve reproductive isolation in sympatry, as

allopatric pairs of species also display a substantial number

of pMSP differences (figure 3a).

Experimental evolution of rapid reproductive isolation by

RCD of sex pheromones in a pair of Drosophila species [5]

supports the hypothesis that the evolution of chemical com-

munication may contribute to reproductive isolation by

RCD. Direct experimental evidence that links sex pheromone

composition and reproductive isolation was repeatedly found

in Lepidoptera in which the presence of a heterospecific sex

pheromone compound typical of a closely related sympatric

species, decreases attraction to traps baited with female

pheromones [52]. In B. anynana, the absence of the MSP

decreases the mating success of males [25]. This suggests

that differences in MSP composition may have an effect on

species recognition in addition to mate choice, because

males of other Bicyclus species lacking the MSP typical of

B. anynana males would have a low mating success when

courting B. anynana females [53].

Natural selection is traditionally flagged for RCD as a

response to the production of maladaptive hybrids (historical

explanation [2]). Yet, the avoidance of maladaptive mating by

females can be considered as promoted by sexual selection

for good genes [54]. Moreover, divergent sexual selection pro-

duces rapid diversification of secondary sexual traits [55]

such as observed for pMSP composition. It is notoriously dif-

ficult to separate natural and sexual selection in driving the

evolution of secondary sexual traits and many authors see

the two processes as a continuum from species recognition

to mate choice [53,56]. Here, we cannot exclude natural or

sexual selection in the evolution of pMSP composition as

the two processes can produce the same RCD pattern.

Together, our data provide large-scale evidence of recur-

rent RCD in an olfactory mate choice trait. We propose that

chemical communication displays unique properties com-

pared with visual, acoustic or electric [50] modes of

communication, which may facilitate its role in the evolution

of premating reproductive isolation. First, we found similar

pMSP components in distantly related Bicyclus lineages and

most pMSP components in one Bicyclus species could be

found scattered as trace compounds in a few other Bicyclus
lineages (in 14% of the species on average, noted by grey

cells in figure 2b). This large phenotypic standing variation,

as found in other species [41,57], suggests that each Bicyclus
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species has access to most of the enzymes involved in the bio-

synthesis of the pMSP components. Thus, the wide diversity

and the rapid evolution (figures 2 and 4) of sex pheromone

composition in Bicyclus may be explained by the lack of

intrinsic biosynthetic constraints, as has been found in

Drosophila and some moths [58–60]. Second, sex pheromone

components are qualitative, discrete, signals that require

specific one-to-one corresponding chemical receptors to

allow communication to take place [19–21], which gives

rise to a unique ‘lock-and-key’ privacy in communication

between courting individuals. Interestingly, the stimulation

of the sex pheromone-specific olfactory receptor is sufficient

to trigger complete courtship behaviour in the silk moth

Bombyx mori [20] and Ostrinia Lepidoptera [21], and the

replacement of a sex pheromone receptor by that of another

species is sufficient to induce male courtship towards hetero-

specific females [20]. Thus, we expect that the turnover of sex

pheromone receptors expressed in specific olfactory neurons

can elicit the same adaptive courtship behaviour in response

to newly produced sex pheromone components without

additional modification of hard-wired circuits that link the

olfactory neurons to higher neuronal centres. This provides

a mechanism by which such qualitative chemical signals

can undergo rapid evolution. We propose that, relative to

other modes, chemical communication is: (i) an open niche

as the diversity of potential new chemical compounds is see-

mingly unlimited; (ii) private provided the ‘lock-and-key’

nature of olfactory receptors and sex pheromone com-

ponents, and as such evolves under a limited number of

selective forces (i.e. illicit receivers such as predators or para-

sitoids); and (iii) labile given that a turnover in sex pheromone
signals and receptors can take place without disrupting the

subsequent adaptive behavioural courtship steps. As such,

this ubiquitous mode of communication may act as a more

general driver of reproductive isolation by RCD than

previously envisaged.
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